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Robust optimization problems

Setup:

Set of probability measures Q on Rd

Continuous and bounded function f : Rd → R.

Objective:

Solve

(P) := sup
ν∈Q

∫
f dν

Different choices of Q lead to

Constrained optimal transport (see e.g. Ekren and Soner (2018),
includes martingale optimal transport)

Distributionally robust optimization (see e.g. Esfahani and Kuhn
(2015), Blanchet and Murthy (2016), Bartl et al. (2017), Ob lój and
Wiesel (2018))

Mixtures of the above (Gao and Kleywegt (2017))
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Example: Martingale optimal transport (MOT)
Stock St for times t = 1, 2 has known marginals µ1, µ2 ∈ P(R).

Q =
{
ν ∈ P(R2) : ν1 = µ1, ν2 = µ2, if (S1,S2) ∼ ν, then E[S2|S1] = S1

}
The function f can model an exotic option, e.g. f (s1, s2) = (s2 − Ks1)+.
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Numerical approach: Discretization

Idea: Reduce problem (P) to a finite dimensional problem (Pn) by going
over to a discrete space.

In the prior example for instance:

Approximate marginals

µ1 ≈ µn1 =
n∑

i=1

αiδxi , µ2 ≈ µn2 =
n∑

i=1

βiδyi

Replace Q by

Qn = {ν ∈ P(R2) : ν1 = µn1, ν2 = µn2,

if (S1,S2) ∼ ν, then E[S2|S1] = S1}

Solve (Pn) = infν∈Qn

∫
f dν instead of (P).
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Numerical approach: Discretization

Discretization of (P), as well as solving the discrete versions of (P) are
studied and applied successfully in a lot of works:

MOT: Alfonsi et al. (2017), Guo and Ob lój (2018)

OT: See e.g. Peyre and Cuturi (2018)

Distributionally robust optimization: Esfahani and Kuhn (2015)

Difficulty: Discretization scales badly with dimension.

In the prior example, (Pn) has n2 parameters.

In a MOT problem with T time steps, and K dimensional assets,
(Pn) has nT ·K parameters!
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Alternative: Parametrization

Idea: Work with {νλ : λ ∈ Λ} ⊂ Q where Λ is a finite-dimensional
parameter space that one can scale independently of dimension.

Problem: No expressive sets {νλ : λ ∈ Λ} available that are also
numerically feasible to work with.
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Using the dual formulation

We consider problems (P) = supν∈Q
∫
fdν which allow for a dual

formulation of the form
(D) = inf

h∈H:
h≥f

ϕ(h)

where H ⊂ C (Rd) and ϕ : H → R is a linear functional.

Example: For the MOT problem from before

H = {h(x , y) = h1(x) + h2(y) + h3(x) · (y − x) : hi ∈ Cb(R)}
ϕ(h) =

∫
R h1dµ1 +

∫
R h2dµ2

→ Parametrizing H is simpler than parametrizing Q ! (See also
Henry-Labordère (2013))
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Why use neural networks?

(Feed-forward) neural networks are parametrized functions that build on
concatenation of several layers of simple functions.

Rk 3 x 7→ Al ◦ σ ◦ Al−1︸ ︷︷ ︸
(l−1). layer

◦... ◦ σ ◦ A0︸ ︷︷ ︸
1. layer

(x)

where Ai are affine transformations and σ : R→ R is a non-linear
activation function that is applied element-wise.

Neural networks can approximate a lot of functions with a high, but
numerically feasible amount of parameters.

Successful in practice, even though theoretical understanding of
numerical schemes is lacking.
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Solution approach using neural networks

(D) = inf
h∈H:
h≥f

ϕ(h)

Step 1: We replace H by a set of neural network functions Hm. Thereby,
trading strategies are then restricted to feed-forward neural networks.

Resulting finite-dimensional problem

(Dm) = inf
h∈Hm:
h≥f

ϕ(h)

Problem: Constraint h ≥ f prevents application of numerical schemes
based on gradient-descent.
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Solution approach using neural networks

(Dm) = inf
h∈Hm:
h≥f

ϕ(h)

Step 2: Penalize the inequality constraint h ≥ f .

(Dm
θ ) = inf

h∈Hm
ϕ(h) +

∫
∞max{f − h, 0}dθ

If θ gives positive mass of every open ball, then (Dm
θ ) = (Dm).

Implementation problem: The mapping x 7→ ∞max{0, x} has no useful
gradients.
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Solution approach using neural networks

(Dm
θ ) = inf

h∈Hm
ϕ(h) +

∫
∞max{f − h, 0}dθ

Step 3: Approximate x 7→ ∞max{x , 0} by a sequence of differentiable
nondecreasing convex functions (βγ)γ>0, e.g. βγ = γmax{0, x}2.

(Dm
θ,γ) = inf

h∈Hm
ϕ(h) +

∫
βγ(f − h)dθ
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Solution approach: Overview

Label Statement Description

(D) inf
h∈H:
h≥f

ϕ(h) initial problem

(Dm) inf
h∈Hm:
h≥f

ϕ(h) finite dimensional version of (D)

(Dm
θ ) inf

h∈Hm
ϕ(h) +

∫
∞(f − h)+dθ dominated version of (Dm)

(Dm
θ,γ) inf

h∈Hm
ϕ(h) +

∫
βγ(f − h) dθ penalized version of (Dm

θ )

Table: Summary of problems occurring in the approach.
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Solution approach: Theoretical results

Under mild assumptions on H, Hm and θ it holds

(Dm)→ (D) for m→∞ (1)

(Dm
θ,γ)→ (Dm) for γ →∞ (2)

Related results

To (1): E.g. Bühler et al. (2018),

To (2): E.g. Cominetti and San Mart́ın (1994), Cuturi (2013), many
others related to Sinkhorn distance, Bregman projection and
Schrödinger problem.
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Numerics: MOT example
MOT as in introduction
f (s1, s2) = (s2− s1)+

Marginals µ1, µ2: Some mixtures of normals

Neural network Discretization

Parameter

NN with 4 layers &
hidden dimension 64,

θ = µ1 ⊗ µ2,
βγ(x) = 1000 max{0, x}2

n = 600
(Relaxed martingale

constraint: ε = 10−6)

Optimizer
Approximate dual optimizer

ĥ
Approximate coupling ν̂

Superhedging
price

0.2956 0.2990

Subhedging
price (inf over
Q instead)

0.0889 0.0844
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MOT: Dual optimizer

Superhedging
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MOT: Dual optimizer

Subhedging
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Back to the primal

Goal: Use the neural network solution of the dual to obtain a (near)
optimal measure of the primal!

The problem

(Dθ,γ) = inf
h∈H

ϕ(h) +

∫
βγ(f − h)dθ

has a primal formulation

(Pθ,γ) = sup
ν∈Q

∫
fdν −

∫
β∗γ

(
dν

dθ

)
dθ

and if (Dθ,γ) has an optimizer ĥ, one can often show that ν̂ given by

d ν̂

dθ
= β′γ(f − ĥ)

is an optimizer of (Pθ,γ).
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is an optimizer of (Pθ,γ).

Stephan Eckstein Neural Network Hedging September 5, 2018 17 / 21



MOT: Primal optimizer

Approximately optimal coupling: Superhedging
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MOT: Primal optimizer

Approximately optimal coupling: Subhedging
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Risk aggregation (DNB Case Study - Aas and Puccetti
(2014))

Bank is exposed to 6 types of risks X1, ...,X6 with known marginal
exposures.

An expert opinion µ̄ ∈ P(R6) about the joint distribution of
(X1, ...,X6) is given.

Goal: Calculate bounds on

AVaRα
(∑6

i=1
Xi

)
under constraints that

(X1, ...,X6) have marginals µ1, ..., µ6

Joint distribution ν ∼ (X1, ...,X6) is in a Wasserstein ball around µ̄ of
a given radius ρ: Wp(µ̄, ν) ≤ ρ
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Bank risk aggregation (DNB Case Study)

Using only marginal information:

Reference model 

30506
24165 

 (Best Case)
36410 
 (Worst Case)

Average Value at Risk for = 0.95
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Bank risk aggregation (DNB Case Study)

Worst case around reference model:

Reference model 

30506
24165 

 (Best Case)
36410 
 (Worst Case)

Worst case over Wasserstein ball around  of radius 

( = 1)
36142

( = 1/6)
33175

Average Value at Risk for = 0.95
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Thank you
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